ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease.
نویسندگان
چکیده
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of Abeta-bound ABAD shows substantial deformation of the active site that prevents nicotinamide adenine dinucleotide (NAD) binding. An ABAD peptide specifically inhibits ABAD-Abeta interaction and suppresses Abeta-induced apoptosis and free-radical generation in neurons. Transgenic mice overexpressing ABAD in an Abeta-rich environment manifest exaggerated neuronal oxidative stress and impaired memory. These data suggest that the ABAD-Abeta interaction may be a therapeutic target in AD.
منابع مشابه
Inhibition of the Mitochondrial Enzyme ABAD Restores the Amyloid-β-Mediated Deregulation of Estradiol
Alzheimer's disease (AD) is a conformational disease that is characterized by amyloid-β (Aβ) deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzy...
متن کاملCritical analysis of Alzheimer's amyloid-beta toxicity to mitochondria.
Amyloid-beta peptide (Abeta) is believed to be a central player in the Alzheimer disease (AD) pathogenesis. However, its mechanisms of toxicity to the central nervous system are unknown. To explore this area, investigators have recently focused on Abeta-induced cellular dysfunction. Extensive research has been conducted to investigate Abeta monomers and oligomers, and these multiple facets have...
متن کاملMitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta.
Amyloid beta (Abeta) plays a critical role in the pathophysiology of Alzheimer's disease. Increasing evidence indicates mitochondria as an important target of Abeta toxicity; however, the effects of Abeta toxicity on mitochondria have not yet been fully elucidated. Recent biochemical studies in vivo and in vitro implicate mitochondrial permeability transition pore (mPTP) formation involvement i...
متن کاملP135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملNoradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity.
Degeneration of locus coeruleus (LC) noradrenergic forebrain projection neurons is an early feature of Alzheimer's disease. The physiological consequences of this phenomenon are unclear, but observations correlating LC neuron loss with increased Alzheimer's disease pathology in LC projection sites suggest that noradrenaline (NA) is neuroprotective. To investigate this hypothesis, we determined ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 304 5669 شماره
صفحات -
تاریخ انتشار 2004